ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Ладья стоит на поле a1 шахматной доски. За ход разрешается сдвинуть ее на любое число клеток вправо или вверх. Выигрывает тот, кто поставит ладью на клетку h8. Кто выигрывает при правильной игре?

Вниз   Решение


Стороны ромба EFGH являются гипотенузами равнобедренных прямоугольных треугольников EAF, FDG, GCH, HBE, причём все эти треугольники имеют общие внутренние точки с ромбом EFGH. Сумма площадей четырёхугольника ABCD и ромба EFGH равна 12. Найдите GH.

ВверхВниз   Решение


На плоскости расположены 100 точек-овец и одна точка-волк. За один ход волк передвигается на расстояние не больше 1, после этого одна из овец передвигается на расстояние не больше 1, после этого снова ходит волк и т.д. При любом ли начальном расположении точек волк сможет поймать одну из овец?

ВверхВниз   Решение


Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 66916

Темы:   [ Изогональное сопряжение ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике $ABC$ проведены высоты $BB_1$, $CC_1$ и диаметр $AD$ описанной окружности. Прямые $BB_1$ и $DC_1$ пересекаются в точке $E$, а прямые $CC_1$ и $DB_1$ – в точке $F$. Докажите, что $\angle CAE=\angle BAF$.
Прислать комментарий     Решение


Задача 66944

Тема:   [ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9,10,11

Автор: Рябов П.

В равнобедренном треугольнике $ABC$ ($AB=BC$) проведен луч $l$ из вершины $B$. На луче внутри треугольника взяты точки $P$ и $Q$ так, что $\angle BAP=\angle QCA$. Докажите, что $\angle PAQ=\angle PCQ$.
Прислать комментарий     Решение


Задача 66974

Темы:   [ Изогональное сопряжение ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 9,10,11

Автор: Рябов П.

Диагонали трапеции $ABCD$ ($BC\parallel AD$) пересекаются в точке $O$. На отрезках $BC$ и $AD$ выбраны соответственно точки $M$ и $N$. К окружности $AMC$ проведена касательная из $C$ до пересечения с лучом $NB$ в точке $P$; к окружности $BND$ из $D$ проведена касательная до пересечения с лучом $MA$ в точке $R$. Докажите, что $\angle BOP=\angle AOR$.
Прислать комментарий     Решение


Задача 66923

Темы:   [ Изогональное сопряжение ]
[ Биссектриса угла ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $\angle A=60^{\circ}$, $AD$ – биссектриса. Построен равносторонний треугольник $PDQ$ с высотой $DA$. Прямые $PB$ и $QC$ пересекаются в точке $K$. Докажите, что $AK$ – симедиана треугольника $ABC$.
Прислать комментарий     Решение


Задача 67368

Темы:   [ Изогональное сопряжение ]
[ Прямая Гаусса ]
[ Теоремы Чевы и Менелая ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Пусть $(P,P')$ и $(Q,Q')$ – две пары точек, изогонально сопряженных относительно треугольника $ABC$, $R$ – точка пересечения прямых $PQ$ и $P'Q'$. Докажите, что педальные окружности точек $P$, $Q$ и $R$ соосны.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .