Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 31]
|
|
Сложность: 5+ Классы: 10,11
|
В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что
$$
R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2).
$$
|
|
Сложность: 6 Классы: 9,10,11
|
На сторонах
BC,
CA и
AB треугольника
ABC взяты
точки
A1,
B1 и
C1, причем прямые
AA1,
BB1 и
CC1
пересекаются в одной точке
P. Докажите, что прямые
AA2,
BB2
и
CC2, симметричные этим прямым относительно соответствующих
биссектрис, тоже пересекаются в одной точке
Q.
|
|
Сложность: 5- Классы: 9,10,11
|
Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A1. Аналогично определяются точки B1 и C1.
а) Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
б) Пусть A2 – точка касания ω со стороной BC. Докажите, что прямые AA1 и AA2 симметричны относительно биссектрисы угла A.
Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
|
|
Сложность: 5- Классы: 9,10,11
|
Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 31]