Страница:
<< 145 146 147 148
149 150 151 >> [Всего задач: 1221]
В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)?
|
|
Сложность: 4+ Классы: 8,9,10
|
Для любых n вещественных чисел a1, a2, ..., an существует такое натуральное k ≤ n, что каждое из k чисел ak, ½ (ak + ak–1),
⅓ (ak + ak–1 + ak–2), ..., 1/k (ak + ak–1 + ... + a2 + a1) не превосходит среднего арифметического c чисел a1, a2, ..., an.
|
|
Сложность: 4+ Классы: 10,11
|
На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
C1 = C, C2, C3, ..., где Cn+1 – центр описанной окружности треугольника ABCn. При каком положении точки C
а) точка Cn попадёт в середину отрезка AB (при этом Cn+1 и дальнейшие члены последовательности не определены)?
б) точка Cn совпадает с C?
|
|
Сложность: 4+ Классы: 8,9,10
|
Из двухсот чисел: 1, 2, 3, ..., 199, 200 выбрали одно число, меньшее 16, и ещё 99 чисел.
Докажите, что среди выбранных чисел найдeтся два таких, одно из которых делится на другое.
В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел
любой строки равно числу, стоящему на их пересечении.
Доказать, что сумма всех чисел в таблице равна единице, или все числа равны нулю.
Страница:
<< 145 146 147 148
149 150 151 >> [Всего задач: 1221]