Страница: 1
2 3 >> [Всего задач: 11]
|
|
Сложность: 3 Классы: 8,9,10
|
3 равные окружности с центрами
O1,
O2,
O3 пересекаются в данной
точке.
A1,
A2,
A3 — остальные точки пересечения. Доказать, что
треугольники
O1O2O3 и
A1A2A3 равны.
Три равные окружности пересекаются в одной точке. Докажите, что треугольник с вершинами в остальных точках попарного пересечения окружностей равен треугольнику
с вершинами в центрах окружностей.
Даны три равных окружности, пересекающихся в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Докажите, что полученные три прямые пересекаются в одной точке.
Точка
O является точкой пересечения высот остроугольного треугольника
ABC.
Докажите, что 3 окружности, проходящие: первая через точки
O,
A,
B,
вторая — через точки
O,
B,
C и третья — через точки
O,
C,
A,
равны между собой.
|
|
Сложность: 4 Классы: 8,9,10
|
Три окружности радиуса
R проходят через точку
H;
A,
B и
C — точки их попарного пересечения, отличные
от
H. Докажите, что:
а)
H — точка пересечения высот треугольника
ABC;
б) радиус описанной окружности треугольника
ABC тоже равен
R.
Страница: 1
2 3 >> [Всего задач: 11]