ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 239]      



Задача 57082

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Наибольшая или наименьшая длина ]
[ Векторы помогают решить задачу ]
[ Экстремальные свойства правильных многоугольников ]
Сложность: 4
Классы: 9,10

Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.

Прислать комментарий     Решение

Задача 66224

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Векторы помогают решить задачу ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 9,10

Автор: Белухов Н.

Выпуклый шестиугольник A1A2...A6 описан около окружности ω радиуса 1. Рассмотрим три отрезка, соединяющие середины противоположных сторон шестиугольника. Для какого наибольшего r можно утверждать, что хотя бы один из этих отрезков не короче r?

Прислать комментарий     Решение

Задача 79360

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Векторы помогают решить задачу ]
[ Наименьший или наибольший угол ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 11

Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

Прислать комментарий     Решение

Задача 86114

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10

На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

Прислать комментарий     Решение

Задача 103933

Темы:   [ Преобразования подобия (прочее) ]
[ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 9,10,11

Автор: Вим Пайлс

На плоскости даны два отрезка A1B1 и A2B2, причём  A2B2/A1B1 = k < 1.  На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что  A3А2/А3А1 = А4А2/А4А1 = k.  Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k.  Найти угол между прямыми А3В3 и А4В4.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .