Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Найдите объёмы белых параллелепипедов.

Вниз   Решение


На плоскости даны точки A и B. Найдите ГМТ M, для которых разность квадратов длин отрезков AM и BM постоянна.

ВверхВниз   Решение


Основания трапеции равны a и b  (a > b).  Найдите длину отрезка, соединяющего середины диагоналей трапеции.

ВверхВниз   Решение


Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:

$\,$5 $\,$6 $\,$7 $\,$8 $\,$9 10 11 12 13 14 15 16 17 18 19 20 21 22
8,1 $\,$8 $\,$7 8,1 $\,$9 $\,$8 8,1 7,2 $\,$7 $\,$8 $\,$9 8,1 $\,$9 $\,$8 $\,$9 8,2 $\,$7 7,1

Марина хочет ежедневно съедать по одному банану. Она любит только зелёные бананы, поэтому согласна съесть банан только в течение 4 дней после покупки. Например, банан, купленный 5 октября, Марина согласна съесть 5, 6, 7 или 8 октября. Марина может запасаться бананами, когда они подешевле.

В какие дни по сколько бананов надо покупать Марине, чтобы потратить как можно меньше денег?

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 258]      



Задача 115770

Темы:   [ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?

Прислать комментарий     Решение

Задача 115857

Темы:   [ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство

Прислать комментарий     Решение

Задача 30928

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 6,7

Докажите, что если  x + y + z ≥ xyz,  то  x² + y² + z² ≥ xyz.

Прислать комментарий     Решение

Задача 55238

Темы:   [ Вспомогательные подобные треугольники ]
[ Экстремальные свойства треугольника (прочее) ]
[ Неравенство Коши ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

Прислать комментарий     Решение

Задача 64319

 [Неравенство Птолемея]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Теорема Птолемея ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство  AB·CD + AC·BD > AD·BC.

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .