Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 1221]
|
|
Сложность: 3+ Классы: 7,8,9
|
В марте 1987 года учитель решил провести 11 занятий математического кружка.
Доказать, что если по субботам и воскресеньям кружок не проводить, то в марте
найдутся три дня подряд, в течение которых не будет ни одного занятия кружка.
|
|
Сложность: 3+ Классы: 6,7,8
|
На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?
|
|
Сложность: 3+ Классы: 7,8,9
|
Режем прямоугольник. Клетчатый прямоугольник разрезали на прямоугольники 1 х 2 (доминошки) так, что любая прямая, идущая по линиям сетки, рассекает кратное четырем число доминошек. Докажите, что длина одной из сторон делится на 4.
|
|
Сложность: 3+ Классы: 7,8,9
|
В большую шкатулку положили 10 шкатулок поменьше. В каждую из вложенных шкатулок либо положили 10 еще поменьше, либо ничего не положили. В каждую из меньших опять положили или 10, или ни одной, и т.д. После этого оказалось ровно 2006 шкатулок с содержимым. Сколько пустых?
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли при каком-то натуральном
k разбить все натуральные числа от 1 до
k на две группы и выписать числа
в каждой группе подряд в некотором порядке так, чтобы
получились два одинаковых числа?
Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 1221]