ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пятиугольник ABCDE вписан в окружность. Найдите её длину, если BC = CE, площадь треугольника ADE равна площади треугольника CDE, площадь треугольника ABC равна площади треугольника BCD, а 3AC + 2BD = 5. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 401]
В угол вписаны две окружности; одна из них касается сторон угла в точках K1 и K2, а другая — в точках L1 и L2. Докажите, что прямая K1L2 высекает на этих двух окружностях равные хорды.
Точка M лежит вне окружности радиуса R и удалена от центра на расстояние d. Докажите, что для любой прямой, проходящей через точку M и пересекающей окружность в точках A и B, произведение MA . MB одно и то же. Чему оно равно?
Через точку M, расположенную на диаметре окружности радиуса 4, проведена хорда AB, образующая с диаметром угол 30o. Через точку B проведена хорда BC, перпендикулярная данному диаметру. Найдите площадь треугольника ABC, если AM : MB = 2 : 3.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|