ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Основание прямой призмы PQRP1Q1R1 – треугольник
PQR , в котором Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений. а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
В треугольнике ABC стороны AB и BC равны между собой, AC = 2, а
|
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1443]
В треугольнике ABC стороны AB и BC равны между собой, AC = 2, а
В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.
В треугольнике ABC даны длины сторон AB = 4, BC = 6 и биссектриса
BD = 3
В треугольнике ABC известно, что AB = 14, BC = 6, AC = 10. Биссектрисы BD и CE пересекаются в точке O. Найдите OD.
Дан треугольник ABC, площадь которого равна 2. На медианах AK, BL и CN треугольника ABC взяты соответственно точки P, Q и R так, что AP : PK = 1, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR.
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1443]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке