Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Сторона основания ABC правильной треугольной пирамиды ABCD равна 4, угол между боковыми рёбрами пирамиды равен arccos . Точки A1 и C1 – середины рёбер AD и CD соответственно, CB1 – высота в треугольнике BCD . Найдите: 1) угол между прямыми AC и B1C1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки A до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.

Вниз   Решение


Окружность касается сторон угла ABC в точках A и C. Прямая BN пересекает эту окружность в точках M и N, а отрезок AC – в точке K,  BM : MN = 3 : 5.
Найдите  MK : KN.

ВверхВниз   Решение


Около окружности радиуса 3 описана равнобедренная трапеция ABCD  (BC || AD),  площадь которой равна 48. Окружность касается сторон AB и CD в точках K и L. Найдите KL.

ВверхВниз   Решение


В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть S – минимальное из этих расстояний. Какое наибольшее значение может принимать S?

ВверхВниз   Решение


При повороте треугольника EFG на угол  arccos ⅓  вокруг точки O, лежащей на стороне EG, вершина F переходит в вершину E, а вершина G – в точку H, лежащую на стороне FG. Найдите отношение, в котором точка O делит сторону EG.

ВверхВниз   Решение


В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.

ВверхВниз   Решение


В треугольнике ABC даны длины сторон AB = 4, BC = 6 и биссектриса BD = 3$ \sqrt{2}$. Найдите длину медианы CE.

ВверхВниз   Решение


В треугольнике ABC  AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что  B1K || BC  и  MA1 || AC.  Докажите, что  ∠AA1K = ∠BB1M.

ВверхВниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, угол между боковым ребром и плоскостью основания пирамиды равен arccos . Точки B1 и C1 – середины рёбер BD и CD соответственно, CA1 – высота в треугольнике ACD . Найдите: 1) угол между прямыми BC и A1C1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки C до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.

ВверхВниз   Решение


В основании четырёхугольной пирамиды SABCD лежит ромб ABCD с острым углом при вершине A . Высота ромба равна 4, точка пересечения его диагоналей является ортогональной проекцией вершины S на плоскость основания. Сфера радиуса 2 касается плоскостей всех граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы до прямой AC равно AB .

ВверхВниз   Решение


Высота конуса с вершиной O равна 4, образующая конуса равна 5. Пирамида ABCD вписана в конус так, что точки A и C принадлежат окружности основания, точки B и D принадлежат боковой поверхности, причём точка B принадлежит образующей OA . Треугольники OAC и OBD – равносторонние, причём OB=3 . Найдите объём пирамиды, двугранный угол при ребре AB и радиус сферы, описанной около пирамиды ABCD .

ВверхВниз   Решение


На столе лежат  N > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

ВверхВниз   Решение


На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что  KQPR,  PLKM,  LRPQ,  QMKL.  Отношение расстояния от центра описанной вокруг четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 312]      



Задача 78524

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Гомотетичные многоугольники ]
[ Симметрия помогает решить задачу ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 9,10

В четырёхугольнике ABCD опущены перпендикуляры AM и CP на диагональ BD, а также BN и DQ на диагональ AC.
Доказать, что четырёхугольники ABCD и MNPQ подобны.

Прислать комментарий     Решение

Задача 111263

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.
Прислать комментарий     Решение


Задача 102241

Темы:   [ Признаки подобия ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Хорды и секущие (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что  KQPR,  PLKM,  LRPQ,  QMKL.  Отношение расстояния от центра описанной вокруг четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.

Прислать комментарий     Решение

Задача 53070

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Вписанная в треугольник ABC окружность касается его сторон AC и BC в точках M и N соответственно и пересекает биссектрису BD в точках P и Q. Найдите отношение площадей треугольников PQM и PQN, если $ \angle$A = $ {\frac{\pi}{4}}$, $ \angle$B = $ {\frac{\pi}{3}}$.

Прислать комментарий     Решение


Задача 108530

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Окружность C1 радиуса 2$ \sqrt{3}$ с центром O1 и окружность C2 радиуса $ \sqrt{3}$ с центром O2 расположены так, что O1O2 = 2$ \sqrt{13}$. Прямая l1 касается окружностей в точках A1 и A2, а прямая l2— в точках B1 и B2. Окружности C1 и C2 лежат по одну сторону от прямой l1 и по разные стороны от прямой l2, A1 $ \in$ C1, B1 $ \in$ C1, A2 $ \in$ C2, B2 $ \in$ C2, точки A1 и B1 лежат по разные стороны от прямой O1O2. Через точку B1 проведена прямая l3, перпендикулярная прямой l2. Прямая l1 пересекает прямую l2 в точке A, а прямую l3 — в точке B. Найдите A1A2, B1B2 и стороны треугольника ABB1.

Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .