ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ. В треугольнике ABC, таком, что AB = BC = 4 и
AC = 2, проведены биссектриса AA1, медиана BB1 и высота CC1. В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE. |
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1443]
В треугольнике ABC стороны AB и BC равны между собой, AC = 2, а
В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.
В треугольнике ABC даны длины сторон AB = 4, BC = 6 и биссектриса
BD = 3
В треугольнике ABC известно, что AB = 14, BC = 6, AC = 10. Биссектрисы BD и CE пересекаются в точке O. Найдите OD.
Дан треугольник ABC, площадь которого равна 2. На медианах AK, BL и CN треугольника ABC взяты соответственно точки P, Q и R так, что AP : PK = 1, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR.
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1443]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке