ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральное число можно умножать на 2 и произвольным образом переставлять в нем цифры (запрещается лишь ставить 0 на первое место).
Докажите, что превратить число 1 в число 811 с помощью таких операций невозможно.

   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 1221]      



Задача 102811

Темы:   [ Четность и нечетность ]
[ Обратный ход ]
Сложность: 3
Классы: 7,8

Натуральное число можно умножать на 2 и произвольным образом переставлять в нем цифры (запрещается лишь ставить 0 на первое место).
Докажите, что превратить число 1 в число 811 с помощью таких операций невозможно.

Прислать комментарий     Решение

Задача 102825

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Замена переменных ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 7,8,9

Решите систему уравнений:
    1/x + 1/y = 6,
    1/y + 1/z = 4,
    1/z + 1/x = 5.

Прислать комментарий     Решение

Задача 105096

Темы:   [ Таблицы и турниры (прочее) ]
[ Процессы и операции ]
Сложность: 3
Классы: 6,7,8

На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.)

Прислать комментарий     Решение

Задача 105145

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Придумайте десятизначное число, в записи которого нет нулей, такое что при прибавлении к нему произведения его цифр получается число с таким же произведением цифр.
Прислать комментарий     Решение


Задача 105198

Темы:   [ Числовые таблицы и их свойства ]
[ Перебор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

В клетках таблицы 3×3 расставлены числа так, что сумма чисел в каждом столбце и в каждой строке равна нулю. Какое наименьшее количество чисел, отличных от нуля, может быть в этой таблице, если известно, что оно нечётно?

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .