Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими.

Вниз   Решение


Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что  AH = 1  и  2∠MAC = ∠MCA.  Найдите сторону BC.

ВверхВниз   Решение


Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

ВверхВниз   Решение


Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N . Докажите, что а) прямая MN проходит через середину P второй дуги; б) длина касательной PQ к окружности S1 равна PA .

ВверхВниз   Решение


В спортклубе тренируются 100 толстяков весом от 1 до 100 кг. На какое наименьшее число команд их можно разделить так, чтобы ни в одной команде не было двух толстяков, один из которых весит вдвое больше другого?

Вверх   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1225]      



Задача 79443

Темы:   [ Подсчет двумя способами ]
[ Простые числа и их свойства ]
Сложность: 4-
Классы: 8,9,10

За круглым столом сидят 13 богатырей из k городов, где  1 < k < 13.  Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.

Прислать комментарий     Решение

Задача 79479

Темы:   [ Подсчет двумя способами ]
[ Доказательство от противного ]
[ Сочетания и размещения ]
Сложность: 4-
Классы: 10

Доказать, что в любой группе из 12 человек можно выбрать двоих, а среди оставшихся 10 человек еще пятерых так, чтобы каждый из этих пятерых удовлетворял следующему условию: либо он дружит с обоими выбранными вначале, либо не дружит ни с одним из них.

Прислать комментарий     Решение

Задача 103767

Темы:   [ Разбиения на пары и группы; биекции ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 7

В спортклубе тренируются 100 толстяков весом от 1 до 100 кг. На какое наименьшее число команд их можно разделить так, чтобы ни в одной команде не было двух толстяков, один из которых весит вдвое больше другого?

Прислать комментарий     Решение


Задача 105079

Темы:   [ Разбиения на пары и группы; биекции ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

Прислать комментарий     Решение

Задача 105163

Темы:   [ Итерации ]
[ Многочлены (прочее) ]
[ Предел функции ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 9,10,11

Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  a1, a2, ...,  такая, что  P(a1) = 0,  P(a2) = a1P(a3) = a2  и т. д. Докажите, что не все числа в последовательности  a1, a2, ...  различны.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .