ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадрат 4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.) Решение |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 1341]
Покрасьте клетки доски 5×5 в пять цветов так, чтобы в каждом горизонтальном ряду, в каждом вертикальном ряду и в каждом выделенном блоке встречались все цвета.
Длины оснований трапеции равны m см и n см (m и n – натуральные числа, m ≠ n). Докажите, что трапецию можно разрезать на равные треугольники.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 1341] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|