ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1365]      



Задача 67403

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 8,9,10,11

У девяти фермеров есть клетчатое поле 9×9, огороженное по периметру забором и сплошь заросшее ягодами (в каждой точке поля, кроме точек забора, растёт ягода). Фермеры поделили поле между собой по линиям сетки на 9 участков равной площади (каждый участок – многоугольник), но границы отмечать не стали. Каждый фермер следит только за ягодами внутри (не на границе) своего участка, а пропажу замечает, только если у него пропали хотя бы две ягоды. Всё это известно вороне, но где проходят границы между участками, она не знает. Может ли ворона утащить с поля 8 ягод так, чтобы пропажу гарантированно ни один фермер не заметил?
Прислать комментарий     Решение


Задача 67419

Темы:   [ Раскраски ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8,9

Шахматную доску 8×8 перекрасили в несколько цветов (каждую клетку – в один цвет). Оказалось, что если две клетки – соседние по диагонали или отстоят друг от друга на ход коня, то они обязательно разного цвета. Какое наименьшее число цветов могло быть использовано?
Прислать комментарий     Решение


Задача 76504

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.
Прислать комментарий     Решение


Задача 77991

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 3
Классы: 10,11

Разрезать куб на три равные пирамиды.
Прислать комментарий     Решение


Задача 78149

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что на плоскости нельзя расположить больше четырёх выпуклых многоугольников так, чтобы каждые два из них имели общую сторону.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1365]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .