Версия для печати
Убрать все задачи
Два подмножества множества натуральных чисел называют конгруэнтными, если одно получается из другого сдвигом на целое число.
(Например, множества чётных и нечётных чисел конгруэнтны.) Можно ли разбить множество натуральных чисел на бесконечное число
(не пересекающих друг друга) бесконечных конгруэнтных подмножеств?

Решение
Обозначим корни уравнения x² + px + q = 0 через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек M(, q),
которые задаются условиями:
а) x1 = 0, x2 = 1; б) x1 ≤ 0, x2 ≥ 2;
в) x1 = x2;
г) – 1 ≤ x1 ≤ 0, 1 ≤ x2 ≤ 2.


Решение
Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH.

Решение