ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя закрасил одну клетку прямоугольника. Саша может закрашивать другие клетки этого прямоугольника по следующему правилу: можно красить любую клетку, у которой нечётное число закрашенных соседей (по стороне). Сможет ли Саша закрасить все клетки прямоугольника (независимо от того, какую клетку выбрал Петя), если размеры прямоугольника а) 8×9 клеток? б) 8×10 клеток?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 122]      



Задача 79417

Темы:   [ Целочисленные решетки (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10

На плоскости отмечены точки с целочисленными координатами. Доказать, что найдётся окружность, внутри которой лежат ровно 1982 отмеченные точки.
Прислать комментарий     Решение


Задача 97953

Темы:   [ Целочисленные решетки (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 7,8,9

Автор: Анджанс А.

Город представляет собой бесконечную клетчатую плоскость (линии – улицы, клеточки – кварталы). На одной улице через каждые 100 кварталов на перекрестках стоит по милиционеру. Где-то в городе есть бандит (местонахождение его неизвестно, но перемещается он только по улицам). Цель милиции – увидеть бандита. Есть ли у милиции способ (алгоритм) наверняка достигнуть своей цели? (Максимальные скорости милиции и бандита какие-то конечные, но не известные нам величины, милиция видит вдоль улиц во все стороны на бесконечное расстояние.)

Прислать комментарий     Решение

Задача 104068

Темы:   [ Целочисленные решетки (прочее) ]
[ Инварианты ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4
Классы: 6,7,8

Петя закрасил одну клетку прямоугольника. Саша может закрашивать другие клетки этого прямоугольника по следующему правилу: можно красить любую клетку, у которой нечётное число закрашенных соседей (по стороне). Сможет ли Саша закрасить все клетки прямоугольника (независимо от того, какую клетку выбрал Петя), если размеры прямоугольника а) 8×9 клеток? б) 8×10 клеток?
Прислать комментарий     Решение


Задача 109624

Темы:   [ Целочисленные решетки (прочее) ]
[ Процессы и операции ]
[ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9,10

Автор: Садыков Р.

На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.
Прислать комментарий     Решение


Задача 110094

Темы:   [ Целочисленные решетки (прочее) ]
[ Выпуклые многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Деление с остатком ]
Сложность: 4
Классы: 8,9,10

В выпуклом многоугольнике на плоскости содержится не меньше  m² + 1  точек с целыми координатами.
Докажите, что в нём найдутся  m + 1  точек с целыми координатами, которые лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .