ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 694]      



Задача 86970

Темы:   [ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 4-
Классы: 10,11


Боковые грани треугольной пирамиды образуют равные углы с плоскостью основания. Докажите, что высота пирамиды проходит либо через центр окружности, вписанной в треугольник основания, либо через центр одной из вневписанных окружностей этого треугольника.

Прислать комментарий     Решение


Задача 86971

Темы:   [ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 4-
Классы: 10,11


Каждая из боковых граней треугольной пирамиды образует с плоскостью основания угол в 60o. Стороны основания равны 10, 10, 12. Найдите объем пирамиды.

Прислать комментарий     Решение


Задача 86972

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


Основание пирамиды - ромб с острым углом в 30o. Боковые грани наклонены к плоскости основания под углом в 60o. Найдите объем пирамиды, если радиус вписанного в ромб круга равен r.

Прислать комментарий     Решение


Задача 104106

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.
Прислать комментарий     Решение


Задача 34873

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 10,11

В пространстве даны n точек общего положения (никакие три не лежат на одной прямой, никакие четыре – в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы  n – 3  точки в пространстве ни взять, найдётся плоскость из проведённых, не содержащая ни одной из этих  n – 3  точек.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .