Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно.

Вниз   Решение


Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?

ВверхВниз   Решение


Для натурального a обозначим через P(a) наибольший простой делитель числа  a² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел a, b, c, что  P(a) = P(b) = P(c).

ВверхВниз   Решение


Стороны параллелограмма равны a и b , а острый угол между диагоналями равен α . Найдите площадь параллелограмма.

ВверхВниз   Решение


Автор: Фольклор

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

ВверхВниз   Решение


Автор: Рудаков И.

На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.

ВверхВниз   Решение


Автор: Фольклор

На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?

ВверхВниз   Решение


В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

ВверхВниз   Решение


В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .

ВверхВниз   Решение


Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133]      



Задача 105181

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 9,10

Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.

Прислать комментарий     Решение

Задача 111644

Темы:   [ Арифметическая прогрессия ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

Прислать комментарий     Решение

Задача 115472

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?

Прислать комментарий     Решение

Задача 116001

Темы:   [ Арифметическая прогрессия ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

Прислать комментарий     Решение

Задача 116713

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом:

1, 2, 3, ..., n, –n, ..., –2, –1

По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число  2n + 1  простое.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .