Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найдите наименьшее значение функции y = 9 cos x+14x+7 на отрезке [0;] .

Вниз   Решение


Найдите наименьшее значение функции y = 5 cos x+6x+6 на отрезке [0;] .

ВверхВниз   Решение


Найдите наименьшее значение функции y = 8 cos x+10x+8 на отрезке [0;] .

ВверхВниз   Решение


Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.

ВверхВниз   Решение


Найдите наименьшее значение функции y = 2 cos x+13x+5 на отрезке [0;] .

ВверхВниз   Решение


Найдите площадь сечения правильной треугольной призмы ABCA1B1C1 плоскостью, проходящей через вершину C и середину стороны B1C1 основания A1B1C1 и параллельной диагонали AC1 боковой грани AA1C1C , если расстояние между прямой AC1 и секущей плоскостью равно 1, а сторона основания призмы равна .

ВверхВниз   Решение


У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HEG .

ВверхВниз   Решение


Найдите наименьшее значение функции y = 5 cos x+6x+7 на отрезке [0;] .

ВверхВниз   Решение


Основанием прямой призмы ABCA1B1C1 является прямоугольный треугольник ABC ( B = 90o , AB=BC=10 ); AA1=BB1=CC1=12 . Точка M – середина бокового ребра AA1 . Через точки M и B1 проведена плоскость, составляющая с плоскостью основания угол 45o и пересекающая ребро CC1 в точке E . Найдите CE .

ВверхВниз   Решение


Дана бесконечная последовательность чисел  a1, a2, a3, ...  Известно, что для любого номера k можно указать такое натуральное число t, что
ak = ak+t = ak+2t = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное T, что  ak = ak+T  при любом натуральном k?

ВверхВниз   Решение


Через середину высоты правильной четырёхугольной пирамиды проведено сечение, перпендикулярное боковому ребру. Найдите площадь этого сечения, если боковое ребро равно 4, а угол между боковыми рёбрами, лежащими в одной грани, равен .

ВверхВниз   Решение


Существует ли такая бесконечная периодическая последовательность, состоящая из букв a и b, что при одновременной замене всех букв a на aba и букв b на bba она переходит в себя (возможно, со сдвигом)?

ВверхВниз   Решение


Рассматривается произвольный многоугольник (не обязательно выпуклый).
  а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?
  б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем ⅓ площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)

ВверхВниз   Решение


Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)?

Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102]      



Задача 110058

Темы:   [ Периодичность и непериодичность ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 10,11

Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.
Прислать комментарий     Решение


Задача 107794

Тема:   [ Периодичность и непериодичность ]
Сложность: 5-
Классы: 8,9,10,11

Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)?

Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.

Прислать комментарий     Решение

Задача 97976

Темы:   [ Периодичность и непериодичность ]
[ Предел последовательности, сходимость ]
Сложность: 5-
Классы: 9,10,11

Рассматривается последовательность слов, состоящих из букв "A" и "B". Первое слово в последовательности – "A", k-е слово получается из (k–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
  а) На каком месте в этой последовательности встретится 1000-я буква "A"?
  б) Докажите, что эта последовательность – непериодическая.

Прислать комментарий     Решение

Задача 60911

 [Последовательность Морса]
Темы:   [ Периодичность и непериодичность ]
[ Итерации ]
[ Двоичная система счисления ]
Сложность: 5
Классы: 8,9,10,11

Последовательность Морса. Бесконечная последовательность из нулей и единиц

0110 1001 1001 0110 1001...

построена по следующему правилу. Сначала написан нуль. Затем делается бесконечное количество шагов. На каждом шаге к уже написанному куску последовательности приписывается новый кусок той же длины, получаемый из него заменой всех нулей единицами, а единиц — нулями.
а) Какая цифра стоит на 2001 месте?
б) Будет ли эта последовательность, начиная с некоторого места, периодической?
в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10.
г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд.
д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?

Прислать комментарий     Решение

Задача 30388

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2
Классы: 7,8

Найдите остаток от деления 2100 на 3.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .