ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]      



Задача 98598

Темы:   [ Куб ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 10,11

Некоторый куб рассекли плоскостью так, что в сечении получился пятиугольник.
Докажите, что длина одной из сторон этого пятиугольника отличается от 1 метра по крайней мере на 20 сантиметров.

Прислать комментарий     Решение

Задача 64659

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Соображения непрерывности ]
[ Формула Герона ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Верно ли, что любой выпуклый многоугольник можно по прямой разрезать на два меньших многоугольника с равными периметрами и
  а) равными наибольшими сторонами?
  б) равными наименьшими сторонами?

Прислать комментарий     Решение

Задача 79403

Темы:   [ Ломаные внутри квадрата ]
[ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9,10

В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.
Прислать комментарий     Решение


Задача 57373

 [Неравенство Птолемея]
Темы:   [ Вспомогательные подобные треугольники ]
[ Четырехугольник (неравенства) ]
[ Теорема Птолемея ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан четырёхугольник ABCD. Докажите, что  AC·BD ≤ AB·CD + BC·AD.

Прислать комментарий     Решение

Задача 107834

Темы:   [ Четырехугольники (экстремальные свойства) ]
[ Перенос помогает решить задачу ]
[ Параллелограмм Вариньона ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9,10

Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .