ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написаны три функции: f1(x) = x + 1/x, f2(x) = x², f3(x) = (x – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x. |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 118]
а) Докажите, что при нечётном n > 1 справедливо равенство: = – θ (0 < θ < 1).
а) Используя формулу Муавра, докажите, что cos nx = Tn(cos x), sin nx = sin x Un–1(cos x), где Tn(z) и Un(z) – многочлены степени n. Многочлены Tn(z) и Un(z) называются многочленами Чебышёва первого и второго рода соответственно.
Вычислите суммы: а) 1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1); б) a sin φ + ... + ak sin kφ + ... ( |a| < 1); в) г)
Докажите, что ни при каком целом A многочлен 3x2n + Axn + 2 не делится на многочлен 2x2m + Axm + 3.
На доске написаны три функции: f1(x) = x + 1/x, f2(x) = x², f3(x) = (x – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 118] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|