Страница: 1
2 3 4 5 6 7 >> [Всего задач: 33]
Пусть
ABCD — пространственный четырёхугольник, точки
K1 и
K2 делят
соответственно стороны
AB и
DC в отношении
, точки
K3 и
K4
делят соответственно стороны
BC и
AD в отношении
. Доказать, что
отрезки
K1K2 и
K3K4 пересекаются.
Дана правильная треугольная пирамида
PABC (
P – вершина) со
стороной основания
a и боковым ребром
b (
b > a ). Сфера лежит
над плоскостью основания
ABC , касается этой плоскости в точке
A
и, кроме того, касается бокового ребра
PB . Найдите радиус сферы.
а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.
Докажите, что центр масс этих точек не зависит от выбора таких двух прямых.
б) Внутри окружности находится правильный 2n-угольник (n > 2), его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.
Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников ABC и DEF, где A, B, C, D, E, F – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 33]