ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Назаров Ф.

а) В треугольнике ABC угол A больше угла B. Докажите, что BC > ½ AB.
б) В выпуклом четырёхугольнике ABCD угол A больше угла C, а угол D больше угла B. Докажите, что BC > ½ AD.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 373]      



Задача 57463

Темы:   [ Неравенства для площади треугольника ]
[ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Докажите, что:
  а)  

  б)  
Прислать комментарий     Решение


Задача 66355

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Хорды и секущие (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 108060

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Назаров Ф.

а) В треугольнике ABC угол A больше угла B. Докажите, что BC > ½ AB.
б) В выпуклом четырёхугольнике ABCD угол A больше угла C, а угол D больше угла B. Докажите, что BC > ½ AD.

Прислать комментарий     Решение

Задача 108102

Темы:   [ Против большей стороны лежит больший угол ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Автор: Фольклор

Дан квадрат, внутри которого лежит точка O. Докажите, что сумма углов OAB, OBC, OCD и ODA отличается от 180° не больше чем на 45°.

Прислать комментарий     Решение

Задача 108166

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Медиана, проведенная к гипотенузе ]
[ Проекция на прямую (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .