ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан вписанный четырёхугольник ABCD. Точки P и Q симметричны точке C относительно прямых AB и AD соответственно.
Докажите, что прямая PQ проходит через ортоцентр H треугольника ABD.

   Решение

Задачи

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 829]      



Задача 98601

Темы:   [ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 10,11

Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что
  а) касательная l2, проведённая к Ω2 в точке R, параллельна AK.;
  б) прямые l1, l2 и K имеют общую точку.

Прислать комментарий     Решение

Задача 108052

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанный угол, опирающийся на диаметр ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

Автор: Куланин Е.

Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB. Докажите, что все прямые l проходят через одну точку.

Прислать комментарий     Решение

Задача 108098

Темы:   [ Равные треугольники. Признаки равенства ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4
Классы: 8,9

В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что  AB = A1B1CD = C1D1  и  ∠ADC = ∠A1D1C1.
Докажите, что треугольники ABC и A1B1C1 равны.

Прислать комментарий     Решение

Задача 108122

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Дан вписанный четырёхугольник ABCD. Точки P и Q симметричны точке C относительно прямых AB и AD соответственно.
Докажите, что прямая PQ проходит через ортоцентр H треугольника ABD.

Прислать комментарий     Решение

Задача 108134

Темы:   [ Вспомогательная окружность ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD – вписанный, K – середина той дуги AD , где нет других вершин четырёхугольника. Пусть X и Y – точки пересечения прямых BK и CK с диагоналями. Докажите, что прямая XY параллельна AD.

Прислать комментарий     Решение

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .