ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две окружности, касающиеся внутренним образом в точке N . Касательная к внутренней окружности, проведённая в точке K , пересекает внешнюю окружность в точках A и B . Пусть M – середина дуги AB , не содержащей точку N . Докажите, что радиус окружности, описанной около треугольника BMK , не зависит от выбора точки K на внутренней окружности.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 149]      



Задача 57647

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вневписанные окружности ]
Сложность: 5
Классы: 9,10,11

Найдите отношение сторон треугольника, одна из медиан которого делится вписанной окружностью на три равные части.
Прислать комментарий     Решение


Задача 108142

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема синусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Вписанные и описанные окружности ]
Сложность: 5
Классы: 9,10,11

Даны две окружности, касающиеся внутренним образом в точке N . Касательная к внутренней окружности, проведённая в точке K , пересекает внешнюю окружность в точках A и B . Пусть M – середина дуги AB , не содержащей точку N . Докажите, что радиус окружности, описанной около треугольника BMK , не зависит от выбора точки K на внутренней окружности.
Прислать комментарий     Решение


Задача 116248

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 5
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть I – центр вписанной окружности неравнобедренного треугольника ABC. Через A1 обозначим середину дуги BC описанной окружности треугольника ABC, не содержащей точки A, а через A2 – середину дуги BAC. Перпендикуляр, опущенный из точки A1 на прямую A2I, пересекает прямую BC в точке A'. Аналогично определяются точки B' и C'.
  а) Докажите, что точки A', B' и C' лежат на одной прямой.
  б) Докажите, что эта прямая перпендикулярна прямой OI, где O – центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 98316

Темы:   [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.

Прислать комментарий     Решение

Задача 52437

Темы:   [ Вписанный угол равен половине центрального ]
[ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

Из точки A проведены секущая и касательная к окружности радиуса R. Пусть B – точка касания, а D и C – точки пересечения секущей с окружностью, причём точка D лежит между A и C. Известно, что BD – биссектриса угла B треугольника ABC и её длина равна R. Найдите расстояние от точки A до центра окружности.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .