ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC на стороне AC нашлись такие точки D и E , что AB=AD и BE=EC ( E между A и D ). Точка F – середина дуги BC (не содержащей точки A ) окружности, описанной около треугольника ABC . Докажите, что точки B , E , D и F лежат на одной окружности.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 207]      



Задача 64399

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники (прочее) ]
[ Инверсия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.

Прислать комментарий     Решение

Задача 103934

Темы:   [ Окружность, вписанная в угол ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 8,9

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.

Прислать комментарий     Решение

Задача 108240

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол равен половине центрального ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

В треугольнике ABC на стороне AC нашлись такие точки D и E , что AB=AD и BE=EC ( E между A и D ). Точка F – середина дуги BC (не содержащей точки A ) окружности, описанной около треугольника ABC . Докажите, что точки B , E , D и F лежат на одной окружности.
Прислать комментарий     Решение


Задача 108655

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Биссектриса угла A параллелограмма ABCD пересекает прямые BC и CD в точках X и Y . Точка A' симметрична точке A относительно прямой BD . Докажите, что точки C , X , Y и A' лежат на одной окружности.
Прислать комментарий     Решение


Задача 108671

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9

На отрезке AC как на основании в разных полуплоскостях построены равнобедренные треугольники ABC и ADC , причём ADC = 3 ACB . AE – биссектриса треугольника ABC , отрезки DE и AC пересекаются в точке F . Докажите, что треугольник CEF – равнобедренный.
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .