ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через противоположные рёбра AB и CD тетраэдра ABCD проведены две параллельные плоскости. Аналогично, две параллельные плоскости проведены через рёбра BC и AD , а также – через рёбра AC и BD . Эти шесть плоскостей задают параллелепипед. Докажите, что если тетраэдр ABCD – ортоцентрический (его высоты пересекаются в одной точке), то все рёбра параллелепипеда равны; а если тетраэдр ABCD – равногранный (все его грани – равные между собой треугольники), то параллелепипед – прямоугольный. Вокруг правильного семиугольника описали окружность и вписали в него окружность. То же проделали с правильным 17-угольником. В результате каждый из многоугольников оказался расположенным в своем круговом кольце. Оказалось, что площади этих колец одинаковы. Докажите, что стороны многоугольников одинаковы.
Четырёхугольник ABCD вписан в окружность. Известно, что
AC
Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша? На сторонах острого угла ABC взяты точки A и C. Одна окружность касается прямой AB в точке B и проходит через точку C. Вторая окружность касается прямой BC в точке B и проходит через точку A. Точка D – вторая общая точка окружностей. Известно, что AB = a, CD = b, BC = c. Найти AD. Докажите, что координаты точки пересечения медиан треугольника есть средние арифметические соответствующих координат вершин треугольника. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 241]
Дан правильный шестиугольник ABCDEF. Известно, что
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.
Среди всех решений системы
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.
Докажите, что координаты точки пересечения медиан треугольника есть средние арифметические соответствующих координат вершин треугольника.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 241]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке