ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Число умножили на сумму его цифр и получили 2008. Найдите это число. Даны положительные числа a1, a2, ..., an. Известно, что a1 + a2 + ... + an ≤ ½. Докажите, что (1 + a1)(1 + a2)...(1 + an) < 2. Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°. Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство: Паша записал на доске пример на сложение, после чего заменил некоторые цифры буквами, причём одинаковые цифры – одинаковыми буквами, а различные цифры – различными буквами. У него получилось: КРОСС + 2011 = СТАРТ. Докажите, что Паша ошибся. Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны. На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ.
Через вершины B и C треугольника ABC проведена окружность, которая пересекает
сторону AB в точке K и сторону AC в точке L. Найдите AB, если AK = KB, AL = l,
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼. Вписанная окружность треугольника ABC (AB > BC) касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC. Показать, что если a > b > 0, то разность между средним
арифметическим и средним геометрическим этих чисел находится между |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 258]
Показать, что если a > b > 0, то разность между средним
арифметическим и средним геометрическим этих чисел находится между
Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что
В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%.
Докажите, что если α < β, то Sα(x) ≤ Sβ(x), причём равенство возможно только когда x1 = x2 = ... = xn.
Выведите из неравенства Мюрхеда (задача 61424) неравенство между средним арифметическим и средним геометрическим.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 258]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке