|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки. Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка P на ребре AB , точка Q на ребре BC и точка R на ребре CD взяты так, что AP= Доказать, что площадь прямоугольника, вписанного в треугольник, не превосходит половины площади этого треугольника. |
Страница: 1 2 3 4 >> [Всего задач: 17]
Доказать, что площадь прямоугольника, вписанного в треугольник, не превосходит половины площади этого треугольника.
Пусть Р – произвольная точка внутри треугольника АВС. Обозначим через А1, В1 и С1 точки пересечения прямых АР, ВР и СР соответственно со сторонами ВС, СА и АВ. Упорядочим площади треугольников АВ1С1, А1ВС1, А1В1С, обозначив меньшую через S1, среднюю – S2, а большую – S3. Докажите, что
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.
Страница: 1 2 3 4 >> [Всего задач: 17] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|