ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана трапеция ABCD, M – точка пересечения её диагоналей. Известно, что боковая сторона AB перпендикулярна основаниям AD и BC и что в трапецию можно вписать окружность. Найдите площадь треугольника DCM, если радиус этой окружности равен r. Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности. Даны правильная четырёхугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO ( SO – высота пирамиды). Точка F – середина ребра SD , точка E принадлежит апофеме ST грани BSC , причём TE=3ES . Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой AB , а одна из двух других вершин лежит на прямой EF . Найдите объём цилиндра, если SO=3 , AB=1 . Пусть A , B , C и D – четыре точки пространства, не лежащие в одной плоскости. Докажите, что отрезок, соединяющий середины AB и CD , пересекается с отрезком, соединяющим середины AD и BC . При этом каждый из указанных отрезков делится точкой пересечения пополам. |
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 5294]
Пусть A , B , C и D – четыре точки пространства, не лежащие в одной плоскости. Докажите, что отрезок, соединяющий середины AB и CD , пересекается с отрезком, соединяющим середины AD и BC . При этом каждый из указанных отрезков делится точкой пересечения пополам.
С центром в вершине D квадрата ABCD построена окружность, проходящая через вершины A и C . Через середину M стороны AB проведена касательная к этой окружности, пересекающая сторону BC в точке K . Найдите отношение BK:KC .
Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину B , касается стороны AC и пересекает сторону AB в точке K такой, что BK:AK=5:1 . Найдите длину стороны BC .
Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину A , касается стороны BC и пересекает сторону AC в точке M такой, что AM:MC=4:1 . Найдите длину стороны AB .
На окружности взята точка A , на диаметре BC —
точки D и E , а на его продолжении за точку B —
точка F . Найдите BC , если
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 5294]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке