ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите объём правильной четырёхугольной пирамиды со стороной основания a и высотой h . Найдите объём правильной треугольной пирамиды со стороной основания a и высотой h . Прямые a и b пересекаются. Докажите, что все прямые, параллельные прямой b и пересекающие прямую a , лежат в одной плоскости. Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник? Найдите объём правильной шестиугольной пирамиды с боковым ребром b и высотой h . Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что ∠AKM = ∠CKL. Докажите, что MA = MB.
Петя может располагать три отрезка в пространстве произвольным образом.
После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так,
чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 145]
1) В каком отношении эта плоскость делит диагональ DB1? 2) Найдите площадь полученного сечения.
Петя может располагать три отрезка в пространстве произвольным образом.
После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так,
чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
Известно, что ортогональные проекции некоторого тела на две непараллельные плоскости являются кругами. Докажите, что эти круги равны.
Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 145]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке