ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Числа a, b и c отличны от нуля и выполняются равенства: a + b/c = b + c/a = c + a/b = 1. Докажите, что ab + bc + ca = 0. Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 964]
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?
Может ли вершина параболы у = 4х² – 4(а + 1)х + а лежать во второй координатной четверти при каком-нибудь значении а?
Числа a, b и c отличны от нуля и выполняются равенства: a + b/c = b + c/a = c + a/b = 1. Докажите, что ab + bc + ca = 0.
Существуют ли такие целые числа x, y и z, для которых выполняется равенство: (x – y)³ + (y – z)³ + (z – x)³ = 2011?
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 964] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|