ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 694]      



Задача 108963

Темы:   [ Геометрическая прогрессия ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

Можно ли из геометрической прогрессии 1, ½, ¼, ⅛, ... выделить геометрическую прогрессию с суммой членов, равной  а) 1/7;  б) ⅕?

Прислать комментарий     Решение

Задача 109005

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9,10

Может ли число  1·2 + 2·3 + ... + k(k + 1)  при  k = 6p – 1  быть квадратом?

Прислать комментарий     Решение

Задача 109596

Темы:   [ Геометрическая прогрессия ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Простые числа и их свойства ]
Сложность: 4-
Классы: 9,10,11

Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?

Прислать комментарий     Решение

Задача 109635

Темы:   [ Арифметическая прогрессия ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 9,10

Автор: Купцов Л.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

Прислать комментарий     Решение

Задача 109804

Темы:   [ Последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 9,10,11

Последовательность неотрицательных рациональных чисел a1, a2, a3, ... удовлетворяет соотношению  am + an = amn  при любых натуральных m, n.
Докажите, что не все её члены различны.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .