ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 110395

Темы:   [ Гомотетия помогает решить задачу ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Объём треугольной пирамиды 1. Найдите объём пирамиды с вершинами в точках пересечения медиан данной пирамиды.
Прислать комментарий     Решение


Задача 115941

Темы:   [ Гомотетия помогает решить задачу ]
[ Задачи на максимум и минимум ]
Сложность: 4
Классы: 10,11

Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC .
Прислать комментарий     Решение


Задача 109666

Темы:   [ Гомотетия помогает решить задачу ]
[ Сфера, вписанная в тетраэдр ]
[ Метод ГМТ в пространстве ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 5+
Классы: 10,11

Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.
Прислать комментарий     Решение


Задача 107769

Темы:   [ Гомотетия помогает решить задачу ]
[ Параллельный перенос ]
[ Выпуклые тела ]
[ Принцип Дирихле (площадь и объем) ]
[ Объем помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 6-
Классы: 10,11

Из выпуклого многогранника с 9 вершинами, одна из которых A, параллельными переносами, переводящими A в каждую из остальных вершин, образуется 8 равных ему многогранников. Докажите, что хотя бы два из этих 8 многогранников пересекаются (по внутренним точкам).
Прислать комментарий     Решение


Задача 67115

Темы:   [ Построения (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 3+
Классы: 8,9,10,11

Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .