ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На координатной плоскости дан выпуклый пятиугольник ABCDE с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка. Решение |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 488]
б) Отдыхая, Кай стал заполнять стеклянный аквариум ледяными кубиками, которые лежали рядом. Кубики были самых разных размеров, но среди них не было двух одинаковых. Сможет ли Кай заполнить аквариум кубиками целиком?
Дан выпуклый многоугольник, никакие две стороны которого не параллельны. Для каждой из его сторон рассмотрим угол, под которым она видна из вершины, наиболее удалённой от прямой, содержащей эту сторону. Докажите, что сумма всех таких углов равна 180°.
В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|