Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M .

Вниз   Решение


Окружность, построенная на большей боковой стороне AB прямоугольной трапеции ABCD как на диаметре, пересекает основание AD в его середине. Известно, что AB=10 , CD=6 . Найдите среднюю линию трапеции.

ВверхВниз   Решение


За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

ВверхВниз   Решение


Дан равнобедренный треугольник ABC  (AB = AC).  На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что  BD = AB.
Найдите углы треугольника ABC.

ВверхВниз   Решение


Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

ВверхВниз   Решение


В равнобочной трапеции ABCD угол при основании AD равен α , боковая сторона AB равна b . Окружность, касающаяся сторон AB и AD и проходящая через вершину C , пересекает стороны BC и CD в точках M и N соответственно. Найдите BM , если = 3 .

ВверхВниз   Решение


Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

ВверхВниз   Решение


Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  a1, a2, ...,  такая, что  P(a1) = 0,  P(a2) = a1P(a3) = a2  и т. д. Докажите, что не все числа в последовательности  a1, a2, ...  различны.

ВверхВниз   Решение


Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны.

ВверхВниз   Решение


В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

Вверх   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 490]      



Задача 109736

Темы:   [ Степень вершины ]
[ Раскраски ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 9,10,11

В стране 2001 город, некоторые пары городов соединены дорогами, причём из каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на  2001 – k  республик так, что никакие два города из одной республики не будут соединены дорогой.

Прислать комментарий     Решение

Задача 109752

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10

Автор: Джукич Д.

Найдите все такие нечётные натуральные  n > 1,  что для любых взаимно простых делителей a и b числа n число  a + b – 1  также является делителем n.

Прислать комментарий     Решение

Задача 109762

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

Прислать комментарий     Решение

Задача 109944

Темы:   [ Системы точек ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
Прислать комментарий     Решение


Задача 64811

Темы:   [ Выпуклые многоугольники ]
[ Принцип крайнего (прочее) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10

Выпуклый фанерный многоугольник P лежит на деревянном столе. В стол можно вбивать гвозди, которые не должны проходить через P, но могут касаться его границы. Фиксирующим называется набор гвоздей, не позволяющий двигать P по столу. Найдите минимальное количество гвоздей, позволяющее зафиксировать любой выпуклый многоугольник.

Прислать комментарий     Решение

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 490]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .