Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Дана пирамида ABCD . Сфера касается плоскостей DAB , DAC и DBC в точках K , L и M соответственно. При этом точка K находится на стороне AB , точка L – на стороне AC , точка M – на стороне BC . Известно, что радиус сферы равен 3, ADB = 90o , BDC = 105o , ADC = 75o . Найдите объём пирамиды.

Вниз   Решение


В классе все увлекаются математикой или биологией. Сколько человек в классе, если математикой занимаются 15 человек, биологией – 20, а математикой и биологией – 10?

ВверхВниз   Решение


Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?

ВверхВниз   Решение


В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

ВверхВниз   Решение


а) Какое максимальное количество слонов можно расставить на доске 1000 на 1000 так, чтобы они не били друг друга?
б) Какое максимальное количество коней можно расставить на доске 8×8 так, чтобы они не били друг друга?

ВверхВниз   Решение


В треугольной пирамиде ABCD известно, что AB CD , AC BD , AC = BD , BC = a . Кроме того, известно, что некоторый шар касается всех рёбер этой пирамиды. Найдите радиус шара.

ВверхВниз   Решение


Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

ВверхВниз   Решение


Давным-давно девять одинаковых книг стоили 11 рублей с копейками, а тринадцать таких книг стоили 15 рублей с копейками.
Сколько стоила одна книга?

ВверхВниз   Решение


Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.

ВверхВниз   Решение


Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида  x² + px + q,  среди коэффициентов p и q которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?

ВверхВниз   Решение


Автор: Храбров А.

Даны многочлены  f(x) и g(x) с целыми неотрицательными коэффициентами, m – наибольший коэффициент многочлена  f. Известно, что для некоторых натуральных чисел  a < b  имеют место равенства  f(a) = g(a)  и  f(b) = g(b).  Докажите, что если  b > m,  то многочлены  f и g совпадают.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 109844

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

Прислать комментарий     Решение

Задача 60985

 [Правило знаков Декарта]
Темы:   [ Многочлены (прочее) ]
[ Свойства коэффициентов многочлена ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Докажите, что количество положительных корней многочлена  f(x) = anxn + ... + a1x + a0  не превосходит числа перемен знака в последовательности  an, ..., a1, a0.

Прислать комментарий     Решение

Задача 109775

Темы:   [ Целочисленные и целозначные многочлены ]
[ Свойства коэффициентов многочлена ]
[ Системы счисления (прочее) ]
[ Деление с остатком ]
[ Метод спуска ]
Сложность: 5
Классы: 10,11

Автор: Храбров А.

Даны многочлены  f(x) и g(x) с целыми неотрицательными коэффициентами, m – наибольший коэффициент многочлена  f. Известно, что для некоторых натуральных чисел  a < b  имеют место равенства  f(a) = g(a)  и  f(b) = g(b).  Докажите, что если  b > m,  то многочлены  f и g совпадают.

Прислать комментарий     Решение

Задача 61002

 [Формула Тейлора для многочленов]
Темы:   [ Теоремы Тейлора и приближения функций ]
[ Многочлен n-й степени имеет не более n корней ]
[ Свойства коэффициентов многочлена ]
Сложность: 4-
Классы: 10,11

Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням  x – c:

P(x) = ck(x – c)k,

причем коэффициенты ck могут быть найдены по формуле

ck =         (0 k n).

Прислать комментарий     Решение

Задача 110002

Темы:   [ Целочисленные и целозначные многочлены ]
[ Монотонность и ограниченность ]
[ Свойства коэффициентов многочлена ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5-
Классы: 10,11

Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .