Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Храбров А.

Даны многочлены  f(x) и g(x) с целыми неотрицательными коэффициентами, m – наибольший коэффициент многочлена  f. Известно, что для некоторых натуральных чисел  a < b  имеют место равенства  f(a) = g(a)  и  f(b) = g(b).  Докажите, что если  b > m,  то многочлены  f и g совпадают.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 109844

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

Прислать комментарий     Решение

Задача 60985

 [Правило знаков Декарта]
Темы:   [ Многочлены (прочее) ]
[ Свойства коэффициентов многочлена ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Докажите, что количество положительных корней многочлена  f(x) = anxn + ... + a1x + a0  не превосходит числа перемен знака в последовательности  an, ..., a1, a0.

Прислать комментарий     Решение

Задача 109775

Темы:   [ Целочисленные и целозначные многочлены ]
[ Свойства коэффициентов многочлена ]
[ Системы счисления (прочее) ]
[ Деление с остатком ]
[ Метод спуска ]
Сложность: 5
Классы: 10,11

Автор: Храбров А.

Даны многочлены  f(x) и g(x) с целыми неотрицательными коэффициентами, m – наибольший коэффициент многочлена  f. Известно, что для некоторых натуральных чисел  a < b  имеют место равенства  f(a) = g(a)  и  f(b) = g(b).  Докажите, что если  b > m,  то многочлены  f и g совпадают.

Прислать комментарий     Решение

Задача 61002

 [Формула Тейлора для многочленов]
Темы:   [ Теоремы Тейлора и приближения функций ]
[ Многочлен n-й степени имеет не более n корней ]
[ Свойства коэффициентов многочлена ]
Сложность: 4-
Классы: 10,11

Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням  x – c:

P(x) = ck(x – c)k,

причем коэффициенты ck могут быть найдены по формуле

ck =         (0 k n).

Прислать комментарий     Решение

Задача 110002

Темы:   [ Целочисленные и целозначные многочлены ]
[ Монотонность и ограниченность ]
[ Свойства коэффициентов многочлена ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5-
Классы: 10,11

Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .