Страница:
<< 52 53 54 55 56
57 58 >> [Всего задач: 289]
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC.
|
|
Сложность: 5- Классы: 8,9,10
|
Пять отрезков таковы, что из любых трех из них
можно составить треугольник. Докажите, что хотя бы один из этих
треугольников остроугольный.
|
|
Сложность: 5- Классы: 9,10
|
Крестьянин, подойдя к развилке двух дорог, расходящихся под углом 60°, спросил: "Как пройти в село NN?" Ему ответили: "Иди по левой дороге до деревни N – это в 8 верстах отсюда, – там увидишь, что направо под прямым углом отходит большая ровная дорога – это как раз дорога в NN. А можешь идти другим путём: сейчас по правой дороге; как выйдешь к железной дороге, – значит, половину пути прошёл; тут поверни налево и иди прямо по шпалам до самого NN". – "Ну, а какой путь короче-то будет?" – "Да всё равно, что так, что этак, никакой разницы". И пошёл крестьянин по правой дороге.
Сколько вёрст ему придётся идти до NN? Больше десяти или меньше? А если идти от развилки до NN напрямик? (Все дороги прямые.)
|
|
Сложность: 5- Классы: 9,10,11
|
На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной
линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.
|
|
Сложность: 5 Классы: 10,11
|
Для углов
α ,
β ,
γ справедливо равенство
sinα + sinβ + sinγ 2
.
Докажите, что
cosα + cosβ + cosγ .
Страница:
<< 52 53 54 55 56
57 58 >> [Всего задач: 289]