ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматриваются такие квадратичные функции f(x) = ax² + bx + c, что a < b и f(x) ≥ 0 для всех x. |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 258]
Рассматриваются такие квадратичные функции f(x) = ax² + bx + c, что a < b и f(x) ≥ 0 для всех x.
Докажите, что выполняются классические неравенства между
средними степенными: S–1(x) ≤ S0(x) ≤ S1(x) ≤ S2(x).
Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
Функции f(x) и g(x) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через m число пар (x, y), для которых
Докажите, что при любом натуральном n справедливо неравенство
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|