ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём выпускаемой продукции снижался на одно и то же число процентов. На сколько? Окружность с центром I касается сторон AB , BC , AC неравнобедренного треугольника ABC в точках C1 , A1 , B1 соответственно. Окружности ωB и ωC вписаны в четырехугольники BA1IC1 и CA1IB1 соответственно. Докажите, что общая внутренняя касательная к ωB и ωC , отличная от IA1 , проходит через точку A . В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны? Точки Q и R расположены соответственно на сторонах MN и MP треугольника MNP, причём MQ = 3, MR = 4. Найдите площадь треугольника MQR, если MN = 4, MP = 5, NP = 6. На сторонах AB , BC и AC треугольника ABC взяты
точки C' , A' и B' соответственно. Докажите, что
площадь треугольника A'B'C' равна
где R – радиус описанной окружности треугольника ABC . Дан треугольник ABC со сторонами AB = 6, AC = 4, BC = 8. Точка D лежит на стороне AB, а точка E — на стороне AC, причём AD = 2, AE = 3. Найдите площадь треугольника ADE. Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число; an+1 = ⅕ an, если an делится на 5; Все вершины треугольника ABC лежат внутри квадрата K . Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника ABC , то хотя бы одна из полученных трех точек окажется внутри K . |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]
На прямой даны четыре точки A, B, C, D в указанном
порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под
равными углами.
Окружность с центром I касается сторон AB , BC , AC неравнобедренного треугольника ABC в точках C1 , A1 , B1 соответственно. Окружности ωB и ωC вписаны в четырехугольники BA1IC1 и CA1IB1 соответственно. Докажите, что общая внутренняя касательная к ωB и ωC , отличная от IA1 , проходит через точку A .
Все вершины треугольника ABC лежат внутри квадрата K . Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника ABC , то хотя бы одна из полученных трех точек окажется внутри K .
Дан остроугольный треугольник ABC.
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек A
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке