ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Равные треугольники. Признаки равенства
Подтемы:
|
|||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть A0 – середина стороны BC треугольника ABC, а A' – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в A0 и проходящую через A'. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге BC, не содержащей A, то еще одна из построенных окружностей касается описанной окружности. Решение |
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 352]
Пусть A0 – середина стороны BC треугольника ABC, а A' – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в A0 и проходящую через A'. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге BC, не содержащей A, то еще одна из построенных окружностей касается описанной окружности.
Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если AB = DE, то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.
Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?
В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4.
Внутри остроугольного треугольника ABC постройте (с помощью циркуля и линейки) такую точку K, что ∠KBA = 2∠KAB и ∠KBC = 2∠KCB.
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 352] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|