ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные. Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом. Докажите, что на окружности с центром в точке Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты? Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число. У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой? Докажите, что для любого натурального числа N найдутся такие две пары натуральных чисел, что суммы в парах одинаковы, а произведения отличаются ровно в N раз. Определите, с какой стороны расположен руль у изображенного на рисунке автомобиля. Приведённые квадратные трёхчлены f(x) и g(x) таковы, что уравнения f(g(x)) = 0 и g(f(x)) = 0 не имеют вещественных корней. Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник. |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 117]
Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.
Произведение квадратных трёхчленов x² + a1x + b1, x² + a2x + b2, ..., x² + anx + bn равно многочлену P(x) = x2n + c1x2n–1 + c2x2n–2 + ... + c2n–1x + c2n, где коэффициенты c1, c2, ..., c2n положительны. Докажите, что для некоторого k (1 ≤ k ≤ n) коэффициенты ak и bk положительны.
Впишите в клетки квадрата 3×3 числа так, что если в качестве коэффициентов a, b, c (a ≠ 0) квадратного уравнения ax² + bx + c = 0 взять числа из любой строки (слева направо), столбца или диагонали (сверху вниз) квадрата, то у получившегося уравнения будет хотя бы один корень.
Докажите неравенство:
Доказать, что для любых чисел a1, ..., a1987 и положительных чисел b1,..., b1987 справедливо неравенство
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 117]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке