ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?

   Решение

Задачи

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 1221]      



Задача 109935

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Подсчет двумя способами ]
[ Инварианты ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9,10,11

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Прислать комментарий     Решение

Задача 110022

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

Автор: Храмцов Д.

В коробке лежит полный набор костей домино. Два игрока по очереди выбирают из коробки по одной кости и выкладывают их на стол, прикладывая к уже выложенной цепочке с любой из двух сторон по правилам домино. Проигрывает тот, кто не может сделать очередной ход. Кто выиграет при правильной игре?
Прислать комментарий     Решение


Задача 110054

Темы:   [ Степень вершины ]
[ Подсчет двумя способами ]
[ Деление с остатком ]
Сложность: 4-
Классы: 8,9,10

В стране 2000 городов. Каждый город связан беспосадочными двусторонними авиалиниями с некоторыми другими городами, причём для каждого города число исходящих из него авиалиний есть степень двойки (то есть 1, 2, 4, 8, ...). Для каждого города A статистик подсчитал количество маршрутов, имеющих не более одной пересадки, связывающих A с другими городами, а затем просуммировал полученные результаты по всем 2000 городам. У него получилось 100000. Докажите, что статистик ошибся.

Прислать комментарий     Решение

Задача 110105

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Средние величины ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов ]
Сложность: 4-
Классы: 8,9,10

На отрезке  [0, 2002]  отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Прислать комментарий     Решение

Задача 110165

Темы:   [ Задачи на движение ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9,10

По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?

Прислать комментарий     Решение

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .