ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]      



Задача 87449

Темы:   [ Касательные к сферам ]
[ Правильный тетраэдр ]
Сложность: 3
Классы: 10,11

Ребро правильного тетраэдра равно 4 . Найдите радиус шара, касающего боковых граней тетраэдра в точках, лежащих на сторонах основания.
Прислать комментарий     Решение


Задача 87600

Темы:   [ Двугранный угол ]
[ Правильный тетраэдр ]
Сложность: 3
Классы: 10,11

Найдите двугранные углы пирамиды ABCD , все ребра которой равны между собой.
Прислать комментарий     Решение


Задача 110295

Темы:   [ Касающиеся сферы ]
[ Правильный тетраэдр ]
[ Сфера, вписанная в трехгранный угол ]
Сложность: 3
Классы: 10,11

Внутри правильного тетраэдра с ребром a расположены четыре равных шара. Каждый шар касается трёх других и трёх граней тетраэдра. Найдите радиусы шаров.
Прислать комментарий     Решение


Задача 110300

Темы:   [ Кратчайший путь по поверхности ]
[ Правильный тетраэдр ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 10,11

Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.
Прислать комментарий     Решение


Задача 110322

Темы:   [ Отношение объемов ]
[ Правильный тетраэдр ]
[ Подобие ]
Сложность: 3
Классы: 10,11

На ребре единичного правильного тетраэдра взята точка, которая делит это ребро в отношении 1:2. Через эту точку провежены две плоскости, параллельные двум граням тетраэдра. Эти плоскости отсекают от тетраэдра две треугольные пирамиды. Найдите объём оставшейся части тетраэдра.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .