ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника. Предположим, что цепные дроби В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что CB = BE. Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 имеет корни x1, x2, ..., xn, причем |x1| > |x2| > ... > |xn|. В задаче 60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа а) б) Докажите, что Внутри отрезка АС выбрана произвольная точка В и построены окружности с диаметрами АВ и ВС. На окружностях (в одной полуплоскости относительно АС) выбраны соответственно точки M и L так, что ∠MBA = ∠LBC. Точки K и F отмечены соответственно на лучах ВМ и BL так, что Докажите, что для любых комплексных чисел z, w справедливо равенство ezew = ez+w. Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что Докажите, что AP ≥ AI, причём равенство выполняется тогда и только тогда, когда P совпадает с I. В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы
треугольников BDC и ADC. В выпуклом четырёхугольнике ABCD, диагонали которого пересекаются в точке O, равны между собой углы BAC и CBD, а также углы BCA и CDB. Докажите, что касательные, проведённые из точек B и C к описанной окружности треугольника AOD, равны.
Дана правильная треугольная пирамида SABC . Точка S –
вершина пирамиды, SA = 2 |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 540]
Дана правильная треугольная пирамида SABC . Точка S – вершина пирамиды, AB = 1 , AS = 2 , BM – медиана треугольника ABC , AD – биссектриса треугольника SAB . Найдите длину отрезка DM .
Дана правильная треугольная пирамида SABC . Точка S –
вершина пирамиды, SA = 2
В правильной четырёхугольной пирамиде SABCD , каждое ребро
которой равно 2, построено сечение плоскостью, параллельной диагонали
основания AC и боковому ребру SB пирамиды и пересекающей ребро AB .
Найдите периметр многоугольника, полученного в этом сечении, если
нижнее основание сечения равно
В правильной четырёхугольной пирамиде SABCD , каждое ребро
которой равно b , построено сечение плоскостью, параллельной диагонали
основания BD и боковому ребру SA и пересекающей ребро AB пирамиды.
Периметр многоугольника, полученного в этом сечении, равен
2(2+
Угол бокового ребра с плоскостью основания правильной треугольной пирамиды равен α . Найдите угол боковой грани с плоскостью основания.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 540]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке