ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



Задача 110748

Темы:   [ Выпуклый анализ и линейное программирование ]
[ Неравенства с модулями ]
Сложность: 6-
Классы: 10,11

Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

Прислать комментарий     Решение

Задача 60309

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Индукция (прочее) ]
[ Неравенства с модулями ]
Сложность: 2
Классы: 8

Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Прислать комментарий     Решение


Задача 86514

Темы:   [ Разложение на множители ]
[ Графики и ГМТ на координатной плоскости ]
[ Уравнения с модулями ]
Сложность: 2+
Классы: 8,9

На координатной плоскости изобразите все точки, координаты которых являются решениями уравнения:  y² – |y| = x² – |x|.

Прислать комментарий     Решение

Задача 108970

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Доказательство тождеств. Преобразования выражений ]
[ Модуль числа (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что выражение

+

равно 2, если 1<= a <= 2 , и равно 2 , если a>2 .
Прислать комментарий     Решение

Задача 78667

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 11

По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .