ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза. Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64. Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/
Окружности с центрами O1 и O2 имеют общую хорду AB ,
Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.
На стороне BC треугольника ABC взята точка D такая, что
Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника. Дана окружность и точка P внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке P . Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям. Площади граней ABC и ADC тетраэдра ABCD равны P и Q , двугранный угол между ними равен α . Найдите площадь треугольника, по которому биссекторная плоскость указанного угла пересекает тетраэдр.
В равностороннем треугольнике ABC сторона равна a .
На стороне BC лежит точка D , а на AB –
точка E так, что BD = В выпуклом четырёхугольнике сумма расстояний от любой точки внутри четырёхугольника до четырёх прямых, на которых лежат стороны четырёхугольника, постоянна. Докажите, что этот четырёхугольник — параллелограмм. Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 133]
Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.
Может ли выпуклый неправильный пятиугольник иметь ровно
четыре стороны одинаковой длины и ровно четыре диагонали одинаковой
длины?
Точка O, лежащая внутри выпуклого многоугольника,
образует с каждыми двумя его вершинами равнобедренный треугольник.
Докажите, что точка O равноудалена от вершин этого многоугольника.
Докажите, что в любом выпуклом многоугольнике,
кроме параллелограмма, можно выбрать три стороны, при
продолжении которых образуется треугольник, объемлющий
данный многоугольник.
Дан выпуклый n-угольник, никакие две стороны
которого не параллельны. Докажите, что различных треугольников,
о которых идет речь в задаче 22.8, не менее n - 2.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке