Страница:
<< 1 2 [Всего задач: 10]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Основанием пирамиды является правильный треугольник со стороной 1. Из трёх углов при вершине пирамиды два – прямые.
Найдите наибольший объём пирамиды.
|
|
Сложность: 4 Классы: 10,11
|
Основанием пирамиды
ABCD
является правильный треугольник
ABC со стороной 12.
Ребро
BD перпендикулярно плоскости основания и равно
10
. Все вершины этой пирамиды лежат на боковой
поверхности прямого кругового цилиндра, ось которого
пересекает ребро
BD и плоскость
ABC .
Найдите радиус цилиндра (найдите все решения).
|
|
Сложность: 3 Классы: 10,11
|
Высоты, проведённые из вершин
B и
C тетраэдра
ABCD
пересекаются. Докажите, что
AD BC .
На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?
|
|
Сложность: 4 Классы: 9,10,11
|
Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4
и 5 (тетраэдр можно резать только по ребрам)?
Страница:
<< 1 2 [Всего задач: 10]