ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через вершины A , B и C трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой CD , а её центр лежит на диагонали AC . Найдите площадь трапеции ABCD , если BC=2 , AD=8 . Решение |
Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 769]
Окружность, вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. Докажите, что BN > MN.
Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.
Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|